Quasi-separation of the Biharmonic Partial Differential Equation

نویسندگان

  • W. N. EVERITT
  • B. T. JOHANSSON
  • L. L. LITTLEJOHN
  • C. MARKETT
چکیده

In this paper we consider analytical and numerical solutions to the Dirichlet boundary value problem for the biharmonic partial differential equation, on a disk of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar co-ordinates, is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations; a fourth-order radial equation, and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions the quasi-separation method leads to solutions of the Dirichlet boundary value problem on a disk with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the values zero on the edge of the disk. One significant feature for these biharmonic boundary value problems, in general, follows from the form of the biharmonic differential expression when represented in polar co-ordinates. In this form the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with results obtained in earlier studies. Date: 07 August 2008 (File: C:\Swp55\Biharmonic\biharmonic12.tex). 2000 Mathematics Subject Classification. Primary 31A30, 34B05, 74K20; Secondary 31A25, 31B35, 35P10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Nonconforming tetrahedral finite elements for fourth order elliptic equations

This paper is devoted to the construction of nonconforming finite elements for the discretization of fourth order elliptic partial differential operators in three spatial dimensions. The newly constructed elements include two nonconforming tetrahedral finite elements and one quasi-conforming tetrahedral element. These elements are proved to be convergent for a model biharmonic equation in three...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

Multiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions

In this paper‎, ‎we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity‎. ‎Using some variational arguments and exploiting the symmetries of the problem‎, ‎we establish a multiplicity result giving two nontrivial solutions‎.

متن کامل

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008